
Binding Site Detection and Druggability Index from First Principles

Jesus Seco, F. Javier Luque, and Xavier Barril†,*
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In drug discovery, it is essential to identify binding sites on protein surfaces that drug-like molecules could
exploit to exert a biological effect. Both X-ray crystallography and NMR experiments have demonstrated
that organic solvents bind precisely at these locations. We show that this effect is reproduced using molecular
dynamics with a binary solvent. Furthermore, analysis of the simulations give direct access to interaction
free energies between the protein and small organic molecules, which can be used to detect binding sites
and to predict the maximal affinity that a drug-like molecule could attain for them. On a set of
pharmacologically relevant proteins, we obtain good predictions for druggable sites as well as for
protein-protein and low affinity binding sites. This is the first druggability index not based on surface
descriptors and, being independent of a training set, is particularly indicated to study unconventional targets
such as protein-protein interactions or allosteric binding sites.

Introduction

The biological components used as targets in drug therapy
meet the double condition of being disease-modifying and
having an activity that can be modulated upon binding by small
molecules. Target validation, a necessary step before initiating
a drug discovery program, aims at clarifying the role played by
a putative target in the disease,1 but until recently little effort
was made to ensure that the target could be modulated by a
drug-like molecule. Because drug candidates have a greater
probability of displaying an adequate pharmacokinetics profile
if they are small in size and have a balanced mixture of polar
and apolar groups2,3 and they also have to achieve high binding
affinity to exert their action, only those targets providing a
maximum level of shape and chemical complementarity to drug-
like molecules are effectively useful for pharmacological
intervention. Though this notion is widely assumed in drug
design,4 methods to quantify target druggability have only
recently emerged.5,6 Similarly to binding site detection methods,
druggability predictions have to be able to identify small-
molecule binding sites on a protein, but whereas the former
just aims at providing a correct ranking of the sites within a
protein, the latter should enable comparison between different
targets of interest (e.g., components of a pathway) and provide
an estimate of the feasibility of developing a drug candidate,
which is essential for risk management and adequate project
planning.7

A large body of literature indicates that excellent small-
molecule binding site predictions can be obtained using surface
descriptors (see ref 8 and references therein). The druggability
methods proposed by Abbot5 and Pfizer6 groups build on this
ground to provide druggability indices that are mostly based
on the curvature and lipophilicity of the protein surface, although
they differ in the definition of “druggability”. The index
proposed by Hajduk and co-workers is based on the hit rates
obtained in NMR-based fragment screening.5 It relies on the
assumption that sites binding a higher proportion of fragments

are also more likely to deliver high-affinity, noncovalent drug-
like leads. Thus, the druggability measure is, in fact, a prediction
of the fragment screening hit rates. In contrast, the strategy
adopted by Cheng et al. pursues prediction of the maximal
affinity that a drug-like molecule can achieve for a binding site.6

This is perhaps a more useful criteria in target validation because
the identification of many hits does not guarantee that a drug-
like lead should ensue.9

Regardless of their differences, both methods are extremely
fast and need only an atomic resolution structure of the target
to generate the predictions However, as any empirical method,
their scope is limited by the composition of the training set,
which is inevitably biased toward those target classes that benefit
from abundant structural and pharmacological information. For
instance, protein-protein interactions are a difficult yet promis-
ing target class,10 which is nearly unrepresented in one of the
studies,6 and accurate predictions cannot be presumed for
atypical binding sites. Another potential limitation of the
methods is that the predictions are based on a static representa-
tion of the target and, although they can be used on ensembles
of protein structures,11 some dynamic properties such as the
presence of transient cavities or important interstitial water
molecules can be missed. Most important of all, statistically
derived structure-activity relationships often fail because the
descriptors used to make the predictions do not play a causative
role12 or due to “activity cliffs” (i.e., major changes of activity
due to minor structural differences), which are difficult to capture
using statistical models.13 In this context, it should be noted
that the underlying cause for binding is the presence of hot
spots,14 and the surface descriptors used to make druggability
predictions may not always be good predictors for such
privileged binding loci. Indeed, hot spots also exist in flatter
surfaces and the published methods would be unable to guess
the maximal affinity that a drug-like compound could achieve
in such an environment.

Here we present a new druggability index that, being based
on first principles, bypasses most of the aforementioned limita-
tions and provides a completely independent estimate. Our
approach relies on the evidence (provided by NMR and
crystallographic experiments) that binding sites on protein
surfaces have a tendency to bind small organic solvents.15-18
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We demonstrate that these distinctive binding features are also
reproduced by state-of-the-art computational methods. Further-
more, we show that by analyzing the organic vs water solvation
preferences of the protein surface, it becomes possible to detect
binding sites and to quantify the maximal binding free energy
that a drug-like molecule could achieve for them.

Results

Isopropyl alcohol (iPrOHa) is used as a prototypical drug-
like molecule as it contains a polar part, featuring both hydrogen-
bond donor and acceptor capabilities, and a lipophilic part. To
investigate the druggability of a biomacromolecule of known
structure, we simply solvate it in silico with an iPrOH/water
mixture and perform molecular dynamics (MD) simulations to
determine the solvation preferences (see Methods for details).
After running the simulations, solvent densities are extracted
from the MD trajectories as the count of solvent atoms per
volume unit. Given that binding sites, and hot spots in general,
have a tendency to become desolvated and interact with small
organic molecules,19 their presence will be revealed by an
increase in the local density of iPrOH to a degree proportional
to its strength as interaction points. In the following, we first
validate the use of MD to sample the solvation preferences of
proteins and then we discuss how this approach can be used to
detect binding sites and quantify their maximal binding affinity.
Finally, we proceed to measure the druggability of a set of
pharmacological targets, contrasting the results with experi-
mental data.

Experimental iPrOH Binding Sites. Solvent-mapping stud-
ies have been used to locate binding sites on proteins,20 and
they have revealed iPrOH binding sites at the surface of
thermolysin,21 the p53 core domain,22 and porcine pancreatic
elastase.23 Accordingly, we have used these proteins to test the
ability of our strategy to predict the binding site of small
molecules. This could, in principle, be achieved with molecular
mechanics or docking approaches at a fraction of the compu-
tational cost. In fact, multiple copy simultaneous search,24

computational solvent mapping,25 and the grand canonical

Monte Carlo method of Locus Pharmaceuticals26 have been
developed for the specific purpose of predicting the binding site
of small probe molecules. These methods produce a map of
the interaction preferences of binding sites that can be very
useful in drug design.27,28 Nevertheless, they cannot be expected
to produce quantitative estimates of binding free energies
because: (1) the free energy results from the addition of multiple
terms of large magnitude and opposed sign, which typically have
large associated errors,29 and (2) these methods use rather blunt
approximations such as treating the protein as a rigid body or
ignoring solvation and entropic effects. Using MD simulations
with explicit solvent, we do not have to rely on such ap-
proximations and, as MD sampling naturally converges to a
Boltzmann ensemble, it provides access to free energies without
having to calculate each contributing term.

Structures of thermolysin have been obtained at iPrOH
concentrations ranging from 2% to 100%, revealing several
iPrOH binding sites of different apparent affinities.21 The highest
affinity corresponds to a small pocket on the protein surface,
which is already occupied by iPrOH at a concentration of 5%.
As shown in Figure 1, left, several areas in this pocket have a
population of methyl groups of iPrOH (Me-iPrOH, green
isosurfaces) 16-fold larger than the expected value. This also
coincides with two other areas similarly populated by the
hydroxyl group of iPrOH (O-iPrOH, orange isosurfaces), thus
providing an excellent agreement with the experiment. It is also
interesting to observe that the rest of the protein surface contains
few other sites with high solvent densities, confirming that
iPrOH does not bind everywhere on the surface, rather it
interacts preferably with particular sites which may be presumed
to be binding hot spots. Experimentally, a second binding site
appears at 10% iPrOH and other sites are only detectable at
concentrations above 60%. The secondary binding site is located
in a small cavity in the protein interior with no connection to
bulk solvent. Filling this cavity with iPrOH involves, therefore,
a partial unfolding and refolding of the protein. As this sort of
event happens at timescales much larger than the span of our
MD simulation, in this case, the methodology fails to identify
the site. Clearly, correct predictions are only possible if solvent
molecules can be exchanged at a reasonably fast rate, but we
expect that this will be the case for most binding sites on the
outer surface of proteins. Of the remaining crystallographic
iPrOH molecules, we only observe some density near positions

a Abbreviations: AF2, activation function 2; AR, androgen receptor; BF3,
binding function 3; DHT, 5-R dihydrotestosterone; iPrOH, isopropyl alcohol;
IRK, insulin receptor tyrosine kinase; MD, molecular dynamics; PDB,
Protein Data Bank; PTP-1B, protein phosphatase 1B; rmsd, root-mean
squared deviation.

Figure 1. Experimentally determined iPrOH binding sites (arrows) on the surface of thermolysin (left), p53 core domain (center), and elastase
(right). These are depicted along high concentration areas for the different solvent types, as extracted from MD simulations. Isosurfaces are color-
coded as follows: orange, 16 times the expected density of OH group in iPrOH; green, 16 times the expected density of Me group in iPrOH; cyan,
4 times the expected water density. The yellow arrow signals the oxyanion hole of elastase. Figures 1, 2, 4, and 5 were created with PyMOL
v.0.99.58
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3 and 8 (using the nomenclature used by English et al.), which
appear at 80% and 90%, respectively. In both cases, the observed
densities are much smaller than for the primary binding site.

In the case of p53 core domain, a soak at 35% iPrOH
concentration reveals a single binding site.22 This is fully
reproduced by our calculations, which identify the site as a high
density spot both for O-iPrOH and Me-iPrOH (see Figure 1,
center). The comparison with experimental results is less
straightforward in the case of elastase, as the structure was
obtained at a concentration of 80% iPrOH, 4-fold higher than
the one used in our simulation.23 Notwithstanding this differ-
ence, two out of the three crystallographic iPrOH molecules
are well reproduced by our simulation. The third position
(yellow arrow in Figure 1, right) corresponds to the oxyanion
hole, which usually binds anions (e.g., sulfate) and is therefore
unlikely to bind organic molecules in a high dielectric medium.

Overall, these results indicate that MD with an iPrOH/water
mixture can be used to detect the binding sites of iPrOH. These
are identifiable as areas where high density of O-iPrOH and
Me-iPrOH colocalize. Furthermore, the results also show that
this simple technique reveals other patches on the protein surface
that are readily dehydrated and prefer to interact with organic
molecules. In the next section, we discuss how these putative
hot spots can be used to identify binding sites and quantify their
druggability.

Density isosurfaces, as plotted in Figure 1, provide a
convenient way of visualizing preferential binding sites for polar
and hydrophobic groups of organic molecules, as well as for
water. Another visually interpretable representation is obtained
by projecting the interaction preferences onto the surface of the
biomolecule. This is illustrated for protein MDM2 in Figure 2,
where the number of contacts made by the protein atoms with
each solvent feature (normalized by the expected value) have

been color-coded using a Maxwell triangle. MDM2 binds the
N-terminal tail of p53 and is often cited as an example of
druggable protein-protein interaction.30,31 The p53 binding
groove is clearly identifiable as a large green area, denoting
preference for hydrophobic groups, with an orange-red strip
in the center (O-iPrOH binding preference) marking the site
where Trp23 of p53 forms a hydrogen bond with the protein
backbone. Such graphical representations provide a qualitative
indication of the presence of hot spots or binding sites, but a
quantitative measure can also be obtained if the solvent follows
a Boltzmann distribution.

Detection of Binding Sites and Quantification of Maximal
Affinities. After running the simulation, a grid encompassing
the whole of the simulation box is generated and the number
of times that a solvent feature falls within each grid element is
counted. Comparing the observed population (Ni) with the
expected value (No), the associated free energy can be obtained:

where kB is the Boltzmann constant and T the temperature at
which the simulation was run.

This is graphically represented in Figure 3, which shows a
slice of the grid with the Me-iPrOH count obtained from the
MDM2 simulation and its conversion to free energy values. It
is worth noting the correspondence between the spots of more
favorable interaction free energy and the positions of hydro-
phobic atoms of a potent MDM2 inhibitor (the cyclic peptide

Figure 2. MDM2 surface color-coded according to its solvation
preferences. The inset shows the Maxwell triangle, which was used to
code interaction preferences: green for Me-iPrOH, red for O-iPrOH,
blue for water, and a composite color for mixed preferences. The
binding mode of the p53 peptide is shown for illustrative purposes only.

Figure 3. Slice of a grid used to count the number of times that a
Me-iPrOH is found into each volume element (top). The same grid
converted to free energy of binding using eq 1 (bottom). Image created
with Chimera.59

∆Gi ) -kBT ln(Ni/No) (1)
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in structure 2AXI32). We reasoned that the maximal affinity of
a drug-like ligand could be estimated from the free energy grids
by applying a few basic rules:

(1) The binding free energy (∆Gbind) of Me-iPrOH and
O-iPrOH is transferable to aliphatic and polar neutral features
of a drug-like compound, respectively.

(2) An ideal ligand would place atoms of the right type at
locations offering optimal ∆Gbind, separated between them by
distances no shorter than a covalent bond and spread over a
volume no larger than a typical drug-like molecule.

(3) Atomic contributions to ∆Gbind cannot exceed the -1.5
kcal/mol threshold empirically determined by Kuntz & Koll-
mann.33

(4) Atoms in a ligand play a dual role as part of the chemical
framework and as interaction points. As a result, most atoms
contribute less to binding than they could.34 We postulate that
the same effect can be reproduced by considering the ligands
as a combination of binding features, which make optimal
interactions with the receptor’s hot spots, and connecting parts,
which make negligible contributions to ∆Gbind.

We have implemented a protocol (see Methods) that, based
on those principles, clusters together several interaction points
to form a molecular-shaped volume of maximal binding free
energy.

The systems used in the previous section offer a first test set
for our method. For p53 core domain, the predicted maximal
affinity of a drug-like molecule binding the iPrOH binding site

(and surrounding areas) is only -5.8 kcal/mol, corresponding
to a dissociation constant (Kd) of 60 µM, hence it cannot be
considered druggable. It should be noted that no functional role
has been attributed to this site. The iPrOH binding site of
thermolysin, on the contrary, coincides with the catalytic site,
which is recognized by several inhibitors. In this case, the
maximal affinity prediction is -8.9 kcal/mol (Kd ) 310nM).
Thermolysin inhibitors can be much more potent than that, even
reaching sub-nM values, but it should be noted that they all
contain an anionic moiety (e.g., carboxylic acid, phosphonate)
that forms a complex with the catalytic Zn2+.35 Considering that
metal chelation is very exothermic and that iPrOH does not form
contacts with the ion, the prediction seems a reasonable estimate
for a molecule containing only lipophilic and polar neutral
features. Finally, the iPrOH binding site of porcine pancreatic
elastase is highly homologous to human neutrophil elastase and
many potent inhibitors of the later have been described, but all
of them form a covalent bond with Ser195. On the basis of our
calculations, we predict that a ligand that does not exploit this
mechanism could achieve ∆Gbind up to -10.3 kcal/mol (Kd )
34 nM). Noncovalent inhibitors have only recently been reported
and their potency is in the µM range.36 According to our
prediction, it may be possible to develop more potent nonco-
valent inhibitors of elastase.

Targets of Pharmacological Interest. Five proteins of phar-
macological interest have been selected based on their diverse
size, druggability status, and target class to further explore the
reliability of our method. Solvation with an iPrOH/water mixture
followed by MD simulations provided trajectories that were pro-
cessed as previously described to identify hot spots and binding
sites with their corresponding maximal binding affinities. Results
are summarized in Table 1.

In the case of MDM2, the peptide binding groove is identified
as a site capable of providing a binding free energy up to -14.6
kcal/mol. Being well below the nM range, this site can be
unambiguously labeled as druggable. In agreement with this
prediction, the most potent drug-like inhibitor of HDM2 (the
human homologue of MDM2) has a Kd of 3 nM.37 A second,
albeit less potent, binding site (maximal ∆Gbind ) -10 kcal/

Figure 4. Binding sites detected on the surface of PTP-1B (gray
ribbons). The phosphotyrosine binding site, where most ligands bind,
has no hot spot for binding (dashed circle). The most potent binding
site (green spheres) corresponds to the PTP-1B-IRK interface (IRK
shown as surface). The second one (yellow spheres) reveals the binding
site of allosteric inhibitors. Two other sites of lower maximal affinity
are also shown.

Figure 5. Structure of the androgen receptor with a peptide bound in
the AF2 site (shown in orange) and a small organic molecule bound to
the BF3 site. These are identified as binding sites with maximal affinities
of 1 and 80 nM (green and purple spheres, respectively). Three other
binding sites with predicted binding affinities in the range 0.1-10 µM
are also shown.
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mol) is found at the protein flank. This appears as a result of
side chain movements of residues F86, E95, K98, and M102,
which create a small cavity in the protein wall. Visualization
of the different MDM2 structures deposited in the Protein Data
Bank (PDB) reveal that the aforementioned residues can adopt
different conformations, and one structure (PDB code 1T4F)
even has a small lipophilic pocket coinciding with this putative
secondary binding site. The biological relevance of this site (if
any) is unknown to us.

The LFA-1/ICAM-1 complex is a second example of
protein-protein interaction successfully inhibited by a drug-
like compound.31,38 In this case, inhibitors bind in a ligand-
induced cavity, which is absent in the apo form of LFA-1. The
flexibility of this cavity is evidenced by the fact that it closes
when the water solvated protein is simulated in the absence of
ligand (not shown). In the case of the binary solvent, iPrOH
molecules diffuse into the active site during the equilibration
protocol and keep it open for the full length of the simulation.
Nevertheless, as the C-terminal R helix that forms the lid of
the cavity is intrinsically flexible, the shape of the binding site
changes during MD, becoming smaller than that in the crystal-
lographic structure. Notwithstanding this limitation, the site is
still predicted to be able to bind ligands with an affinity of 27
nM (-10.4 kcal/mol), which is similar to the most potent known
inhibitor (Kd ) 18.3 nM, as determined by isothermal titration
calorimetry).39 The protein surface does not contain other sites
capable of offering tight binding.

Protein phosphatase 1B (PTP-1B) is an extremely challenging
pharmacological target in spite of the fact that hundreds of
inhibitors have been reported and hit rates in random screening
are reasonable.5 After years of efforts from many companies,
there has been very limited success in terms of lead progres-
sion.40 The main difficulty for this target is that binding of the
inhibitors is mediated by salt-bridge interactions and inhibitors
need to be constitutively charged, which greatly damages their
pharmacokinetics properties.9 Our druggability analysis reveals
that there is not a single hot spot for lipophilic or neutral polar
features around the phosphotyrosine binding site, which explains
the total dependency of the charge to achieve potency. Interest-
ingly, the best site, which is predicted to offer a maximal ∆Gbind

of -9.3 kcal/mol (Ki ) 180 nM), coincides with the protein-
protein interface formed between PTP-1B and the insulin
receptor tyrosine kinase (IRK).41 The PTP-1B/IRK interface has
a cloverleaf shape and buries a total of 1725 Å2. As shown in
Figure 4, the predicted binding site is located at the intersection
of the three lobes, coinciding with the position of H1142 of
IRK, an area delimited by V184, P187, and R268 of PTP-1B.

The second most potent binding site is located next to F196
and the C-terminal R helix, and it corresponds to a binding site
of allosteric PTP-1B inhibitors.42 The inhibitors initially reported
were in the low µM range, which compares with our prediction
of 500 nM, but because this is a site of considerable flexibility,
it may be possible to achieve better potencies by inducing a
conformational change. Finally, two weaker binding sites are
detected in areas around C92 (where glycerol and 2-methyl-
2.4-pentanediol have been found to bind: PDB codes 2CNG,
1SUG, and 2CM2) and near residues L234 and V249.

MAP kinase p38 has been included in this set as a representa-
tive of the kinase superfamily, which constitutes one of the main
target classes, widely recognized as druggable.43 The most
potent p38 inhibitors found in the binding database44 have a Ki

of 0.05 nM (∆Gbind) -14kcal/mol). This is in very good
agreement with the sum of all interaction points in the active
side, which add up to -15.7 kcal/mol. Most of the interaction
points are located in the adenine and ribose binding pocket,
which contribute -11.6 kcal/mol. The remaining ∆Gbind is
obtained from a small lipophilic pocket formed by L74, L75,
M78, and F169, which constitutes the allosteric site used by
diaryl ureas.45 The only other binding site detected on the surface
of p38 is in the µM range and is located between the N-terminal
tail and the C-terminal R helix.

The androgen receptor (AR) plays an essential role in prostate
cancer, and antiandrogens are commonly used as a therapy.46

As an alternative to the 5-R dihydrotestosterone (DHT) binding
pocket, the activation function 2 (AF2) cleft and other regulatory
surfaces involved in protein-protein binding have been pro-
posed as targets.47 AF2 is a binding site for coactivators, and
drug-like molecules with low µM activities for the AF2 site of
the thyroid hormone receptor have been discovered,48 which
sets a hopeful precedent. To investigate the potential of AF2 as
a target site, we have simulated the DHT-bound ligand binding
domain of AR. According to our predictions, the AF2 site is
identified as capable of offering -12.3 kcal/mol for binding,
which equates to a Ki of 1 nM and offers good prospects for
this site. Another interesting observation is an 80 nM binding
site coinciding with the recently described binding function 3
(BF3) site49 (see Figure 5). BF3 ligands have been discovered
by crystallographic fragment screening, but their potency has
not been reported yet and nothing is known about its biological
role. Our results suggest that this site merits further attention.
Scattered over the protein surface, other sites of lower relevance
have also been found. These consist of roughed surfaces or very
shallow cavities located around (1) L674, T800, and I841, (2)
V757, M761, Y763, and V769, (3) F878 and P904, and (4) I835,

Table 1. Druggability Predictions for Five Proteins of Pharmacological Interest

no. of sites by predicted Kd

target no. atomsa (SASA)b site best inhibitorc predicted Kd
d e1 nM >1 nM e100 nM >100 nM e10 µM

MDM2 706 P53 3 nM37 0.02 nM 1 1 0
(4600)

LFA1 1475 ligand-induced 18.3 nM39 27 nM 0 1 0
(8300)

PTP-1B 2309 P-Tyr 2.2 nM50 nde 0 0 4
(12100) allosteric 8 µM42,f 0.5 µM

P38 2834 ATP 50 pM51 3 pM 1 0 1
(16100)

AR 2056 AF2 1.0 nM 1 1 3
(11100) BF3 80 nM

a Number of non-hydrogen atoms. b Solvent-accessible surface area (Å2). c Kd (or Ki) of most potent small-molecule inhibitor. d Kd corresponding to the
calculated maximal binding affinity for the specific site. e Not detected; note that this site is considered to be nondruggable. f IC50 value (Kd not available).
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F856, and F916. The first one contains both polar and apolar
interaction points, while the other three are exclusively of an
apolar nature.

Discussion

Biological macromolecules spontaneously associate with
themselves or other molecules (such as metabolites or xenobi-
otics) because part of their surface prefers to form interactions
with organic molecules rather than with water. These inbuilt
solvation preferences are, therefore, the hallmark of a binding
site and should be very useful to predict their existence. Here
we have used MD simulations of a mixture of water and organic
solvent (20% iPrOH) to elucidate solvation patterns on the
surface of proteins. As a first test, we have investigated several
experimentally determined binding sites of the organic molecule
of choice (iPrOH). Reproducing solvent mapping experiments
computationally is not an easy task, as already shown by English
et al., who demonstrated that there is no correlation between
observed apparent affinities and calculated interaction energies.21

Indeed, the free energy of binding is the result of a subtle balance
between many different terms and the interaction energy is only
one of them. Accounting for the desolvation effect and using
some clustering techniques can increase the probability of
discerning true binding sites,25 but it remained to be seen if a
method based on first principles could reproduce the observed
binding preferences. Our results suggest that MD provides a
reasonably good ensemble of the solute-solvent configurational
space, which may be useful to detect binding sites.

We have then considered that drug-like molecules will derive
a large portion of their binding free energy from hydrophobic
contacts and from hydrogen bonds with polar (nonionic)
features, which leads us to postulate that the observed iPrOH
distribution can be used to quantify the maximal binding affinity
that a drug-like molecule can attain for a given site. For the
proteins in our test set, this is certainly the case, as the predicted
maximal ∆Gbind are in good agreement with the binding affinities
of the most potent inhibitors. Obviously, the individual terms
contributing to ∆Gbind of a drug-like molecule may differ
significantly from those in an iPrOH free energy grid, but the
results allow us to think that a similar balance is obtained. For
instance, on the one hand, a drug-like ligand may suffer larger
entropy costs due to loss of conformational degrees of freedom
and its topology may prevent it from placing some atoms in
the ideal locations, but on the other hand, it benefits from a
more diverse collection of atom types which may offer better
chemical complementarity to the protein than iPrOH.

A drug candidate typically binds its target with low nM
potency, thus maximal affinity predictions in the sub-nM range
are a good indication that the site is druggable. Nevertheless it
should be noted that some drugs bind their targets with much
weaker potency. Hence one should not place hard limits on the
maximal binding affinity and it is important to identify all sites
offering binding opportunities. This is perfectly illustrated by
the PTP-1B allosteric inhibitors, which achieve biological
activity in spite of their weak binding affinity.42

The approach described herein features several unique
advantages over current methods but also some potential
shortcomings that should be taken into account. Among the
advantages, it is particularly noticeable that this is a nonpara-
metric method that should be applicable to any target class,
regardless of the amount of previous information available. This
universal character also applies to the interaction type, as it
detects hot spots for binding that may be exploited either by
small molecules or by macromolecules (or both, as in the case

of MDM2). In fact, the only difference between druggable and
nondruggable binding sites is that the former have a greater
density of hot spots, thus resulting in more efficient binding.
Another distinctive feature of our method is that binding sites
appear as a result of clustering adjacent interaction points. This
means that, in addition to a prediction for the whole site, one
also obtains a map of the interaction preferences that may have
other interesting applications. For instance, the most exothermic
interaction spots could be used to define a pharmacophore or
as a guide in docking.

As molecules that do not contain constitutively charged
groups are more likely to be drug-like (i.e., to have adequate
pharmacokinetics), we have initially ignored ionic interaction
sites. Nevertheless, it may be argued that many drugs do contain
ionic groups that form salt bridges or metal complexes with
the protein and are crucial for binding. From a methodological
viewpoint, accounting for these interaction types should be
relatively straightforward, as it would only require making use
of additional probe molecules. Judging from the PTP-1B
example, it may seem that, at least, a certain balance between
ionic and nonionic interactions may be required. Thus, from a
practical point of view, even if ionic interactions are acceptable,
it may be useful to know how much can be gained from
lipophilic and polar neutral features.

Finally, it should be noted that as the method is based on
MD, it inherits its limitations as well as its merits but, being
such a widespread technique, the solutions and know-how are
also at hand. For instance, the technique is computationally
demanding, but there is excellent freeware to run parallel
simulations. Sampling is a potentially more serious limitation,
as correct predictions can only be presumed if the solvent
follows a Boltzmann distribution. Both water and iPrOH
molecules may be kinetically trapped in certain sites, such as
buried binding sites, which would result in slow diffusion rates
and insufficient sampling. We have encountered few such sites
in the proteins we have studied (see Supporting Information),
but enhanced sampling techniques52 might be valuable to
improve the exploration of the configurational landscape.

Conclusion

We propose a new method to detect binding sites and to
quantify the maximal binding affinity that a ligand may achieve
for them. In contrast with other published methods, it is based
on first-principles molecular simulations and is not trained on
a data set. As such, it is particularly suited to study binding
sites that do not fall into the main target classes. Although it is
computationally demanding, it provides a completely indepen-
dent measure of druggability, which can be used instead of, or
in conjunction with, higher throughput methods. Furthermore,
our strategy provides very detailed information about the
interaction preferences of the binding sites and can be extremely
effective to give a new perspective on the target of interest.

Methods

Choice of Solvent Mixture. To map the interaction preferences
of biomolecular surfaces, one can use molecular probes representing
the most common chemical groups.53 We reasoned that, to have
good pharmacokinetics, a drug molecule must obtain most of its
binding free energy from hydrophobic or polar neutral groups, thus
a simple organic solvent could be used as the minimal expression
of a drug-like molecule. As we decided to use MD for sampling,
the organic molecule would also have to be small, thus ensuring a
fast diffusion coefficient. Small aliphatic alcohols fulfill these
conditions and have the additional advantages of being fully
miscible in water and not acting as denaturants at low concentra-
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tions. Our final choice of iPrOH was based on the fact that several
iPrOH binding sites have been experimentally detected in proteins,
which allows us to test the computational strategy. Most force-
field parameters are readily available for iPrOH, as it resembles
the side chain of threonine, and only the electrostatic charges had
to be parametrized using the RESP procedure.54 Table S1 of the
Supporting Information lists the set of parameters used in the
simulation.

A box containing 12 iPrOH molecules and 240 TIP3P water
molecules, which approximately corresponds to a 20% v/v mixture,
was subjected to a 5 ns MD simulation at 300 K and a constant
pressure of 1 atm. Replicas of this equilibrated box were used to
solvate the systems under investigation. The concentration was
chosen to provide adequate sampling of the protein-isopropyl
alcohol configurational space within a reasonable time scale while
ensuring that the organic solvent does not disturb the dynamics of
the simulated systems. Although this value has not been optimized,
in all the simulations we observe a stable trajectory, with rmsd
values relative to the X-ray structure similar to those typically
obtained with pure aqueous solutions (Figure S1 of Supporting
Information).

MD Preparation and Simulation Conditions. A representative
structure of the systems under study was taken from the PDB55

and prepared to carry out MD simulations. The preparatory steps
include addition of missing atoms, removal of duplicated atoms
(such in the case of double occupancies), and assignment of the
most adequate protonation state of histidine residues. Crystal-
lographic ions and water molecules closer than 3.5 Å from any
protein atom were retained. The Leap module of the AMBER
package56 was used to include the system in a solvent-filled
truncated octahedral box spanning 13 Å further from the protein.
Chlorine or sodium ions are finally added to obtain an electrostati-
cally neutral system. To obtain a homogeneous distribution of the
solvent on the protein surface, each system was subjected to a long
equilibration procedure (1.4 ns) whereby Cartesian constraints are
placed on the solute atoms to prevent unfolding while the
temperature is increased up to 600 K (details available in Table S3
of Supporting Information). The productive part of the simulation
is carried out at constant pressure (1 atm) and temperature (300 K)
for a minimum of 16 ns. All simulations are carried out under
periodic boundary conditions and long-range electrostatics are
accounted for using the particle-mesh Ewald summation method,
as implemented in the PMEMD module of the AMBER package.56

The coordinates of all atoms in the system were saved every 2 ps
for further analysis. Calculations were performed at the Barcelona
Supercomputing Centre.

MD Analysis and Hot Spot Detection. The ptraj module of
the AMBER package was used to generate grids with a spacing of
0.5 Å and to count the number of times that a water oxygen, an
iPrOH oxygen, or the carbon of the methyl groups of iPrOH fall
in each of the grid elements (Ni). The central C atom of iPrOH is
not used because it does not have a pure hydrophobic character
and has a limited amount of solvent-accessible surface. To avoid
grid artifacts, the population of each grid element is averaged with
its neighbor positions. The expected population of each solvent type
(No) was extracted from MD simulations of the water/iPrOH
mixture, with no solute. Given Ni and No, eq 1 provides the free
energy of binding, but it should be noted that the Ni/No relationship
is dependent on the size of the grid elements and whether or not
averaging is carried out. For this reason, it is useful to consider
that, according to Kuntz & Kollman, ∆Gbind per atom should not
be lower than -1.5 kcal/mol.33 This upper limit (corresponding to
Ni > 12.5No) is, indeed, very rarely reached in the case of water
molecules, which justifies our choice of grid parameters. Contrarily,
and to our initial surprise, we found that both for Me-iPrOH and
O-iPrOH the -1.5 kcal/mol threshold is surpassed far more
frequently than expected. The reason for this behavior is that
proteins produce a partial separation of phases, as iPrOH concen-
trates around apolar surface patches and keeps away from charged
areas. As a result, the reference values, which were obtained from
homogeneous binary solutions, are too low and they were rescaled

in order to obtain a profile of binding free energies similar to the
one for water (Figure S2 of Supporting Information).

Quantification of Maximal Affinities. Grid files containing
∆Gbind values of the three solvent types are read by a perl script
created in our laboratory, and binding sites and their corresponding
maximal binding affinities are calculated as follows:

(1) Selection of points: the grid element with the overall lowest
value is selected, and all grid elements 1.4 Å around it are set to
zero (this is taken as the distance of a covalent bond). The process
is repeated until all points with a predicted ∆Gbind lower than -0.83
kcal/mol have been selected (note that this value corresponds to a
population 4-fold the expected one). The points selected from the
water grid are not subsequently used, but including them ensures
that polar/apolar points are only selected if they have a higher
affinity for the protein than water. This provides a minimum of 43
points for LFA1 and a maximum of 120 points for AR.

(2) Detection of affinity areas: A graph is created, with high
affinity points considered as vertices, and nodes added between
them if they are less than 2.5 Å apart. This results in a sparse graph
containing small subgraphs disconnected between them. Being
similar in size to a molecule used in fragment-based drug design,57

the “affinity areas” defined by a subgraph can be thought of as
fragment binding sites.

(3) Pruning: Often, an affinity area may consist of points of
maximal affinity surrounded by others of lower affinity. Keeping
all the points would mean that the central one losses much solvent
accessibility and would result in an overestimate of ∆Gbind. We
thus “prune” the subgraphs in a way that solvent accessibility of
the highest affinity points is ensured.

(4) Clustering: In the last step, several subgraphs are merged
together to form larger volumes, corresponding to the size of a
typical drug-like molecule. The volume is estimated as that of a
spheroid defined by the principal moments of inertia of the points
being considered. For each volume, the maximal affinity is simply
the sum of ∆Gbind of all the points included. This step can be
supervised to ensure that affinity areas have been merged in a
meaningful way.
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